Scientific Discovery and Anomaly Detection in Large Aerosol Data Sets

Kiri L. Wagstaff and Michael J. Garay kiri.l.wagstaff@jpl.nasa.gov

Jet Propulsion Laboratory, California Institute of Technology

April 5, 2013
INTERFACE 2013

Multi-angle Imaging Spectroradiometer (MISR) aerosol data

MISR

- 9 view angles, 4 spectral bands
- 275 m to 1.2 km sampling
- I6-day repeat coverage

AOD: Aerosol Optical Depth

- Dust, plumes from volcanoes and fires, pollution
- Estimated from 16x16-pixel area

Goal: analyze large volume of AOD data to find interesting observations

AOD over Los Angeles, 2000 - 2011

Discovery

Exploration of large data sets

- Desiderata
 - Diverse sampling of data set
 - Explain why items are selected
 - Handle missing values

Diversity: What to select?

- Items that differ from those previously seen
- Singular Value Decomposition

Gene 1

original data space

Gene 2

Approximate model of data set variation

Known items
$$-X = U \Sigma V^T$$

Keep only the top K vectors from U

Diversity: What to select?

- Items that differ from those previously seen
- Singular Value Decomposition
 - Approximate model of data set variation

Known items
$$-X = U \Sigma V^T$$

- Keep only the top K vectors from U
- Select items in D that are difficult to represent with model U
- Reconstruction error
 Mean of X

$$R(x) = ||x - (UU^{T}(x - \mu) + \mu)||_{2}$$

Reconstruction of x

DEMUD: Discovery through Eigenbasis Modeling of Uninteresting Data

Updating model U with new x

- Redo SVD from scratch: expensive
- Incrementally update U: fast!
 - U depends only on previous U and new x [Ross et al., 2008]
 - Update data mean incrementally

Principal Components

Data X_{I}

Iterations

Explanations: Reconstruction error

DEMUD using zero-filled data

0.8

0.6

0.4

0.2

0.0

Missing due

to clouds

July 10, 2008

DEMUD using zero-filled data

2

Dec. 20, 2009

1.6
 1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

DEMUD using zero-filled data

3

 \Box

July 26, 2002

-1.0

Zero-fill: bias towards missing values

But missing data isn't really an interesting kind of anomaly here

Handling missing values

- SVD cannot operate on NaNs
 - Fill with zero?
 - Impute missing values? (e.g., kriging)
- Instead, do careful SVD updates using only the observed values [Brand, 2002]

$$\begin{bmatrix} \operatorname{diag}(\mathbf{s}) \ \mathbf{U}^{\top} \mathbf{C} \\ 0 \ \mathbf{K} \end{bmatrix} \longrightarrow \begin{bmatrix} \operatorname{diag}(\mathbf{s}) & \operatorname{diag}(\mathbf{s})(\mathbf{U}_{\bullet} \operatorname{diag}(\mathbf{s}))^{+} \mathbf{c}_{\bullet} \\ 0 & \|\mathbf{c}_{\bullet} - \mathbf{U}_{\bullet} \operatorname{diag}(\mathbf{s})(\mathbf{U}_{\bullet} \operatorname{diag}(\mathbf{s}))^{+} \mathbf{c}_{\bullet})\| \end{bmatrix}$$

- Also, restrict reconstruction error to observed values
- Also, only update evolving mean with observed values

-0.5

-1.0

DEMUD: ignore missing data

Montecito, Sayre, and Freeway fires: 400 houses + 500 mobile homes burned

Ignore missing: bias for good data

Ignore missing: Increased diversity in interesting AODs

Ignore missing and only count positive residuals

$$R(x) = ||x - (UU^{T}(x - \mu) + \mu)||_{2}$$

Percent observed

45 40 35 30 15 10 5 0 1 2 3 4 5 6 7 8 9 Selection

Max-magnitude residual

Good compromise: more observed values, high AOD residuals (i.e., discovery of high-AOD events)

Ignore+high: High-AOD discovery not found by previous two methods

-1.0

Summary

- DEMUD: Scientific discovery in large data sets
 - Incremental SVD to model "already seen"
 - Diverse selections
 - Explanations for selections
 - Missing data: only use observed data
- MISR aerosol data study
 - Detect fires and other interesting aerosol events

Contact: kiri.wagstaff@jpl.nasa.gov